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ABSTRACT
This study compares single-site, multi-site and multi-variable SWAT calibration. The SWAT model 
was applied to a large basin (63 884 km2) and calibrated at a monthly time step with the SUFI-2 
algorithm, using the Kling-Gupta efficiency (KGE) as the objective function. Multi-variable calibration 
was performed by combining streamflow and remote sensing-derived actual evapotranspiration 
data. Parameter transferability was also investigated, by daily time step validation. The KGE for the 
outlet ranged from 0.73 to 0.86, and the average KGE of all streamflow gauge stations ranged from 
0.73 to 0.80, reflecting a good overall simulation performance for the monthly time step. In daily 
time step validation, KGE ranged from 0.62 to 0.68, and the Nash-Sutcliffe efficiency ranged from 
0.40 to 0.60, for the average of all gauge stations. Multi-site and multi-variable calibrations did not 
significantly improve inner sub-basin simulation performance but improved streamflow uncertainty 
when compared to single-site calibration.
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1 Introduction

Hydrological models are important and frequently used tools 
in the environmental field, with growing application for pre
dicting climate change impacts (Daggupati et al. 2015b, Devia 
et al. 2015, Sudheer et al. 2007, Wi et al. 2015; Wu and Chen 
2015). Hydrological model simulations are associated with 
many sources of uncertainty. How to disentangle and reduce 
model uncertainties in hydrological prediction was pointed 
out as one of the 23 unsolved problems in hydrology (UPH; 
Blöschl et al. 2019, UPH #20). Model uncertainties are intrinsic 
and arise from different sources, where model structure, initial 
conditions, observational data, and parameter values are the 
main ones (Wagener and Gupta 2005, Liu and Gupta 2007, 
Yen et al. 2016). Due to the large number of parameters and 
different sources of uncertainty, distributed hydrological 
model calibration and uncertainty analysis is inevitable 
(Zhang et al. 2016). When calibrating a model, different para
meter sets can result in the same, or very similar, simulation 
output, resulting in parameter non-uniqueness (Abbaspour 
et al. 2004, Schuol and Abbaspour 2006, 2015) or equifinality 
(Beven and Binley 1992, Beven 2001) problems.

Good performing simulations for streamflow at the basin 
outlet can be produced at the expense of error compensation 
(Chiang et al. 2014), which is especially problematic in single- 
variable and single-site calibration (Cao et al. 2006). Multi-site 
and multi-variable calibration approaches are promising 

alternatives to work around this problem, since less parameter 
sets will be able to satisfy the calibration criteria for all vari
ables at all considered locations at the same time (Bergstrom 
et al. 2002, White and Chaubey 2005, Daggupati et al. 2015a, 
2015b).

With the development of (semi)distributed hydrological 
models, multi-site calibration approaches are being more fre
quently applied (Zhang et al. 2010, Wi et al. 2015, Leta et al. 
2017, Nkiaka et al. 2018). Previous studies compared multi-site 
and single-site streamflow calibration with respect to model 
output performance. Moussa et al. (2007) calibrated a 543 km2 

French basin considering both nested and non-nested sub- 
basins and reported better performance for interior gauges 
when calibration was conducted with the multi-site approach, 
over the single-site outlet calibration. Zhang et al. (2008) 
calibrated the SWAT model on a 239 km2 basin in the USA 
and reported better performance for both the outlet and inter
ior points when using multi-site calibration, over single-site 
outlet calibration. Similarly, Daggupati et al. (2015b) also 
concluded that multi-site calibration outperforms outlet sin
gle-site calibration when calibrating a 28 330 km2 basin in the 
USA using the SWAT model. In contrast, some authors have 
found similar results for calibration with interior flow data and 
single-site outlet flow data (Khakbaz et al. 2012, Lerat et al. 
2012). Her and Chaubey (2015) investigated the impact of 
multi-site calibration on model output performance and 
uncertainty and suggested that it can reduce equifinality and 
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increase model output uncertainty when compared to single- 
site calibration.

Remotely sensed evapotranspiration (ET) has high spatial 
and temporal resolution and can be used to infer soil moisture, 
an important component of the soil water balance (Allen et al. 
2007, Githui et al. 2012). In areas where the measured data are 
inadequate or inexistent, remotely sensed data, such as ET and 
soil moisture, can be a promising alternative for model cali
bration and validation (Immerzeel and Droogers 2008).

Multi-variable calibration can increase model performance 
and model fidelity. Bergstrom et al. (2002) used multi-variable 
parameter estimation and internal control of the HBV model 
and concluded that the consideration of variables other than 
streamflow can increase confidence in model results. Rientjes 
et al. (2013) used streamflow and remotely sensed evapotran
spiration to compare single and multi-variable calibration 
approaches on HBV model and reported better results when 
the model is calibrated against both variables. Wanders et al. 
(2014) used remotely sensed soil moisture and streamflow to 
calibrate the LISFLOOD model for the Upper Danube River 
basin and concluded that the simultaneous use of both vari
ables can lead to a better simulation of discharge in upstream 
areas. The AWRA-L model was calibrated with evapotran
spiration and soil moisture remotely sensed data and good 
streamflow simulation results were obtained, especially by 
using evapotranspiration data (Kunnath-poovakka et al. 
2016, 2018).

More commonly, multi-variable calibration with the SWAT 
model uses streamflow and suspended sediment data (e.g. 
Brighenti et al. 2019). Remotely sensed data have been more 
frequently used in multi-variable calibration with SWAT in 
recent years. Githui et al. (2012) estimated groundwater 
recharge using remotely sensed evapotranspiration and 
streamflow measurements to calibrate the SWAT model in 
an irrigated basin in Australia. Rajib et al. (2016) reported 
reduced parameter uncertainty when calibrating the SWAT 
model with streamflow and remotely sensed soil moisture 
data simultaneously. SWAT model calibration was also carried 
out with satellite-based evapotranspiration only, in southwes
tern Nigeria (Odusanya et al. 2019). Finally, Briak et al. (2019) 
reinforce the importance of multi-variable calibration and 
compare different calibration approaches for the SWAT 
model.

Incorporating multiple objectives (multiple sites, multiple 
objective functions, or multiple variables) in model calibration 
is not straightforward. Many papers evaluate different strate
gies to integrate discharge data from multiple sites in model 
calibration (e.g. Feyen et al. 2008; Wi et al. 2015; Leta et al. 
2017, Lavenne et al. 2019). For example, Feyen et al. (2008) and 
Wi et al. (2015) compared the use of single-site calibration, 
sequential calibration, and simultaneous multi-site calibration. 
When dealing with multiple objective functions, the most 
common approach is based on Pareto optimality. However, 
different approaches have also been investigated. For example, 
Fenicia et al. (2007) applied a stepwise calibration approach, in 
which the model was sequentially calibrated using different 
objective functions at each step. In their study, after calibration 
with one objective function, the parameters related to that 

objective function were fixed, and the next calibration (using 
the next objective function) was performed.

Transferring parameter sets between different temporal 
scales is a common practice on hydrological modeling 
(Sudheer et al. 2007, Melsen et al. 2016). Troy et al. (2008) 
investigated the effects of transferring calibrated parameters 
sets of the variable infiltration capacity (VIC) model from 
coarser to finer temporal and spatial scales. Their results indi
cated that transferring parameter sets between different time 
scales performed better than for different spatial resolutions. 
Chaney et al. (2015) used observed monthly and annual flows 
to constrain parameter sets for the VIC model and evaluate the 
reduction in the uncertainty of daily runoff estimates, which 
was strongly dependent on climate. Melsen et al. (2016) com
pared the VIC model calibration and validation for hourly, 
daily and monthly time steps, suggesting that the monthly time 
step calibration cannot ensure satisfactory daily or hourly 
model performance. Sudheer et al. (2007) calibrated SWAT 
model at monthly and daily scales and concluded that calibra
tion at a coarser time scale (monthly) does not ensure satisfac
tory model performance at a finer time scale (daily). The daily 
calibrated model, however, significantly improved the monthly 
scale simulation. Conversely, Daggupati et al. (2015b) cali
brated the SWAT model at monthly scale and obtained good 
results when validating the model at daily scale. The conflicting 
results suggest the need for more studies in this topic.

The main objective of this study is to evaluate the impact of 
different calibration strategies on model streamflow simulation 
performance and uncertainty. Model simulations were per
formed in the Iguaçu river basin, located in southern Brazil. 
We calibrated the SWAT model using SUFI-2 algorithm and 
KGE as the objective function. Different calibration strategies 
were compared: single-site (E1 – streamflow data), multi-site 
(E2 – streamflow data), and multi-variable (E3 – evapotran
spiration and streamflow data). Results were assessed at the 
main basin outlet and interior streamflow gauges. We also 
investigated parameter transferability from monthly to daily 
time scale. For this purpose, monthly calibrated parameters 
were validated at daily time step. We compared the results in 
terms of output performance and uncertainty. The calibration 
dataset includes streamflow measurements for the main outlet 
and interior flow gauges and remotely sensed derived actual 
evapotranspiration data.

Franco and Bonumá (2017) calibrated the SWAT model 
with evapotranspiration and outlet streamflow data for the 
upper Negro River Basin (3453 km2), a small sub-basin of 
the Iguaçu River Basin. This study follows the methodology 
applied by Franco and Bonumá (2017), using evapotranspira
tion data from METRIC and KGE as objective function to 
calibrate the SWAT model with SUFI-2. Major contributions 
of the present study, compared to Franco and Bonumá (2017), 
are the considerable larger drainage area (63 884 km2) and the 
comparison of multi-site calibration strategy with more com
monly applied single-site calibration. Franco and Bonumá 
(2017) reported better streamflow performance with multi- 
variable calibration (evapotranspiration and outlet stream
flow). Also, that study reported poor streamflow simulation 
performance of SWAT model calibrated with 
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evapotranspiration only. Therefore, calibration with evapo
transpiration data only was not evaluated in this study.

2 Materials and methods

2.1 Study area

The Iguaçu River is a tributary of the Paraná River, with 
approximately 1320 km length, flowing from east to west. 
The Iguaçu River joins the Paraná River after the Itaipu 
Dam, one of the largest hydropower plants in the world. The 
Iguaçu River Basin drains about 67 455 km2, of which approxi
mately 65 720 km2 is situated in Brazilian territory and 
1735 km2 in Argentina (Fig. 1). The average annual precipita
tion is 1842 mm/year. Due to its topography and natural 
conditions, the Iguaçu River Basin is favorable for the installa
tion of hydropower plants. Currently, five hydropower plants 
located along the Iguaçu River are operating. Together, their 
present installed capacity totals 6556 MW (Machado 2012).

The basin is largely populated (approximately 4.5 million 
people) and the urban population, as well as the industrial, 
mining, agricultural, and livestock activities, are supplied 
mostly by surface water from rivers within the basin (SEMA 
2010).

The Iguaçu River Basin is crucial for the ecological con
servation of the Atlantic forest. Forest remnants from the 
original Subtropical Ombrophilous Forest (SOF) in the 
basin are important key areas for ecological conservation, 
such as the Iguaçu National Park. For the modeled portion 
of the basin, native forest covers about half of the area 

(49.8%), followed by agriculture (30.3%) and pasture 
(9.5%). Reforestation covers 6.8% of the area and urban 
areas occupy about 2.2% of the total basin area. A land 
cover map was generated by supervised image classification 
with Landsat 8 imagery of the year 2015.

2.2 METRIC model

The mapping evapotranspiration at high resolution with inter
nalized calibration (METRIC) is a model to calculate evapo
transpiration as a residual of surface energy balance using 
satellite images, producing ET “maps” (images) to quantify 
ET at field scale (Allen et al. 2007). The METRIC model is 
based on SEBAL (Bastiaanssen et al. 1998) and was modified to 
be applied to mountainous terrain (Allen et al. 2005). SEBAL 
and METRIC use “hot” and “cold” pixels, where two extreme 
conditions (dry and wet) are found, to internally calibrate the 
energy balance (Allen et al. 2002, 2007). Field measurements 
from meteorological stations are required to calculate refer
ence ET, used to extrapolate instantaneous ET from the image 
to daily and monthly scales (Allen et al. 2007). SEBAL has been 
largely applied and validated under different climatic condi
tions worldwide, with a typical accuracy of 95% at field scale on 
seasonal basis and 96% for annual ET of large basins 
(Bastiaanssen et al. 2005).

For this study, we used an ET dataset produced by Uda 
(2016). The dataset was produced using the METRIC model 
applied to MODIS imagery for the Iguaçu river basin. The data 
comprises monthly actual ET for the years 2006, 2007, and 2009.

Figure 1. Location of the study area: Iguaçu River Basin.
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2.3 SWAT model

The Soil and Water Assessment Tool (SWAT) model was 
selected because of its popularity among the scientific commu
nity, provided GIS interface (Dile et al. 2016) and open-source 
code. Research using SWAT has been largely reported in peer- 
reviewed papers, with relevant applications on streamflow 
calibration and calibration techniques (Gassman et al. 2007).

The SWAT model is a continuous-time, physically based, 
semi-distributed river basin model that operates commonly on 
a daily time step (Arnold et al. 2012). A brief description of 
SWAT methods is given below. The reader is referred to the 
manual (Neitsch et al. 2011) for further details.

Rainfall water can follow different paths in SWAT simula
tion. Rainfall can be intercepted and remain on canopy storage 
until it evaporates or falls to the soil surface. Water on the soil 
surface can infiltrate or flow overland as runoff, and reach 
a channel. The infiltrated water may be removed by evapo
transpiration or flow to the surface water system via under
ground paths (Neitsch et al. 2011).

The land phase of the hydrological cycle is based on the 
following equation: 

SWt ¼ SW0 þ
Xt

i¼1
R � Qsurf � Ea � wseep � Qgw
� �

(1) 

where SW is the soil water content (mm), t is the time (days), 
R is the amount of precipitation (mm), Qsurf is the amount of 
surface runoff (mm), Ea is the amount of ET (mm), wseep is the 
amount of water percolating to the shallow aquifer (mm), and 
Qgw is the amount of return flow (mm) (Neitsch et al. 2011).

2.4 Model set-up and spatial discretization

The SWAT model for the studied basin was built within the 
QGIS interface (QSWAT 1.3) that uses a 2012 version of 
SWAT (Dile et al. 2016). In the spatial discretization of the 
modeled area in SWAT, the basin is first subdivided into sub- 
basins, which are divided into hydrological response units 
(HRUs). The sub-basins are generated according to the user- 
defined minimum contribution area for stream generation and 
topography and are divided into multiple HRUs consisting of 

the same land use, soil type and slope band each (Neitsch et al. 
2011). Due to the large-modelled area, the minimum contri
bution area for stream formation and sub-basin division was 
set to 100 km2, creating 365 sub-basins and 9741 HRUs. The 
modeled area comprises only the Brazilian territory of the 
basin and, therefore, the total modeled area is 63 884 km2 

(94.7% of the entire Iguaçu River Basin).
Despite being a large and complex basin, anthropic inter

ventions were not included in the simulation due to the lack of 
reliable information and the higher complexity that would 
have been inserted in the model. The choice of a simpler 
model construction is based on the main intention of the 
study, which is to address changes in streamflow simulation 
uncertainty due to different calibration methods. The added 
complexity of considering these interventions would have had 
a very limited contribution to the main objective of the study.

2.5 Data

Table 1 summarizes the data and corresponding sources used 
in this study. Daily rainfall data from 90 raingauges (Fig. 1) 
were obtained for the period 2000–2009. Missing rainfall data 
were filled by inverse distance weighted interpolation with 
observations from the nearest raingauges. For the same time 

Table 1. Summary of data used for this study.

Source Resolution

Rainfall data Hidroweb ANAa Daily
Soil database EMBRAPAb

Digital Elevation Model (DEM) EMBRAPAb 90 m
Meteorological data EPAGRIc 

INMETd 

IAPARe 

SIMEPARf

Daily

Land cover map Derived from Landsat 8 imagery 30 m
Streamflow data Hidroweb ANAa 

Águas Paranág
Daily

Evapotranspiration METRIC from Uda (2016) Monthly
aNational Water Agency (ANA), Brazil. 
bEMBRAPA (Miranda 2005). 
cEPAGRI, Santa Catarina, Brazil. 
dNational Meteorological Institute (INMET), Brazil. 
eParaná Agronomic Institute (IAPAR), Paraná, Brazil. 
fParaná Meteorological System (SIMEPAR), Paraná, Brazil. 
gParaná Water Institute (Instituto das Águas do Paraná), Paraná, Brazil.

Figure 2. SWAT sub-basins and streamflow gauges. Sub-basins with red streamflow gauges were selected for posterior analysis.
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interval, daily meteorological data (maximum and minimum 
daily temperature, solar radiation, average wind speed and 
average relative humidity) were obtained for 17 meteorological 
stations (Fig. 1). For model calibration and validation, daily 
measured streamflow data from 2000 to 2009 were collected 
from 23 streamflow gauges (Fig. 2). Evapotranspiration time 
series for calibration were generated from the average values of 
the pixels located inside each sub-basin delineated by SWAT.

The Brazilian Electric System National Operator maintains 
a regularly updated database with calculated naturalized 
streamflow for some hydropower plants in the Brazilian terri
tory. Naturalized daily streamflow values are calculated by 
removing the effect of the upstream reservoir operation and 
the flow rate corresponding to the reservoir evaporation and 
consumptive water use, thereby reconstructing the natural 
streamflow regime (ONS 2007, 2016). For the Iguaçu River 
Basin, these data are available for the Salto Caxias hydropower 
plant reservoir, located 80 km upstream from the main outlet. 
The naturalized streamflow data were used only for daily 
validation of model results at the Salto Caxias location.

The basin soil type database was composed from Paraná 
(Bhering 2007) and Santa Catarina (Potter et al. 2004) soil type 
maps. The SWAT soil database was constructed with albedo 
from Post et al. (2000) and pedotransfer functions applied to 
each soil layer and soil type.

2.6 Model calibration and validation

Calibration and validation periods were established follow
ing the Klemeš (1986) split-sample approach, dividing the 
period 2002–2009 into two equal parts for calibration (
2006–2009) and validation (2002–2005). Calibration was 
conducted only at a monthly time step. The calibration 
period comprises an extremely dry year, 2006 (average 
rainfall: 1318 mm/year), and a relatively rainy year, 2009 
(average rainfall: 2004 mm/year). Validation was performed 
only for streamflow, since no ET data were available for the 
validation period. Daily streamflow validation was con
ducted separately for the calibration (2006–2009) and vali
dation (2002–2005) periods, to assess parameter timescale 
transferability. All calibration and validation periods were 
preceded by 2 years of warm-up.

Sensitivity analysis, calibration, and validation were carried 
out within SWAT-CUP (calibration and uncertainty pro
gram), using the SUFI-2 (sequential uncertainty fitting) pro
cedure. Global sensitivity analysis was performed with 
parameters chosen based on a review of the existing literature 
(Yang et al. 2007, Betrie et al. 2011, Githui et al. 2012, Zhang 
et al. 2015). The relative sensitivity of parameters is dependent 
on the variables included in the objective function and the time 
step considered. For the sensitivity analysis, streamflow and 
evapotranspiration were included in the objective function one 
at a time, using monthly data from the period 2006–2009. Both 
multi-site (average of all stations) and single-site (outlet only) 
conditions were investigated during the sensitivity analysis. 
The global sensitivity analysis is performed by regressing the 
Latin hypercube generated parameters values against objective 
function values (Abbaspour 2015). From this initial sensitivity 
analysis, parameters to which evapotranspiration and 

streamflow were more sensitive were included in model cali
bration, resulting in a total of 12 calibrated parameters. 
Evapotranspiration was sensitive to fewer parameters than 
streamflow (results not shown). Evapotranspiration was most 
sensitive to SOL_AWC, SLSOIL, and CN2, while changes in 
streamflow were more pronounced due to changes in 
ALPHA_BF, DEP_IMP, and CH_K1. Calibrated parameters 
and their initial range are listed in Table 2. Different processes 
of the hydrological cycle and channel routing phase are 
affected by the chosen parameters. A more detailed description 
of each parameter can be found in the SWAT manual. 
Sensitivity analysis was also conducted using daily discharge 
data. At the daily scale, streamflow was more sensitive to nine 
of the 12 parameters listed in Table 2.

2.6.1 SUFI-2 procedure
Calibration and validation were implemented on SWAT-CUP, 
using the sequential uncertainty fitting algorithm – version 2 
(SUFI-2), an inverse modeling approach for combined opti
mization and uncertainty analysis (Abbaspour et al. 2004). The 
SUFI-2 algorithm was selected to calibrate the SWAT due to 
the large simulated area (63 884 km2), which requires a large 
amount of processing time. Comparison studies reported that, 
from the algorithms available in SWAT-CUP, the SUFI-2 
program is the least computationally expensive to run (Yang 
et al. 2008).

In the SUFI-2 algorithm, the parameter value ranges are 
reduced with successive iterations. To calibrate a model with 
SUFI-2, all iterations must be carried out with the same num
ber of simulations. For each iteration, the parameters are 
homogenously sampled using Latin Hypercube according to 

Table 2. Calibrated parameters and initial ranges.

Parameter name Description Adjustment File Min. Max.

CN2 Initial soil conservation 
service runoff (Curve 
Number)

R mgt −0.30 0.30

SOL_AWC Available soil water 
capacity (mm)

R sol −0.30 0.30

ALPHA_BF Baseflow alpha factor V gw 0 1
GW_DELAY Groundwater delay 

(days)
V gw 0 500

GWQMN Threshold depth of water 
in the shallow aquifer 
required for return 
flow to occur (mm)

V gw 0 5000

LAT_TTIME Lateral flow travel time 
(days)

V hru 0 180

CH_K1 Effective hydraulic 
conductivity in the 
tributary channel 
(mm/h)

V sub 0 300

CH_N1 Manning’s n value for the 
secondary channel

V sub 0.01 0.5

RCHRG_DP Deep aquifer percolation 
fraction

V gw 0 1

SLSOIL Slope length for lateral 
subsurface flow (m)

V hru 0 150

CANMX Canopy storage capacity V hru 0 10
DEP_IMP Depth to impervious 

layer in soil profile 
(mm)

V hru 0 6000

V: existing parameter value is to be replaced by a given value, 
R: existing parameter value is multiplied by (1 + a given value)
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the number of simulations to be carried out. Parameter ranges 
are reduced at each iteration, always centered on the parameter 
set that produced the best objective function value (Abbaspour 
et al. 2004, Abbaspour 2015). All calibration strategies were 
conducted with two iterations, and each iteration consisted of 
500 simulations. Validation was conducted with one iteration 
consisting of 500 simulations.

As stated by Abbaspour et al. (2004), the objective of 
SUFI-2 is to find a “best range” of values for each calibrated 
parameter, and parameter set combinations inside this “best 
range” should ensure high-quality simulations. Although 
indicated in the calibration results, the SUFI-2 objective it is 
not to find only one set of parameter values. The final cali
brated parameter ranges must be assessed for the validation 
periods with the same number of simulations as the calibra
tion iterations. Therefore, 500 parameter sets sampled from 
the final calibrated ranges were assessed in terms of model 
goodness-of-fit statistics (KGE, NS and PBIAS). For each 
calibration strategy this resulted in 500 performance values 
of each statistic. Kundu et al. (2016) refers to this simulation 
set as the “best solution set”. The “best simulation” is the 
simulation with one single set of parameters that yielded the 
best objective function value. The “best simulation” perfor
mance is also presented and discussed. In this study, the 
simulation achieving the highest average objective function 
value, considering all 23 streamflow gauges, is referred to as 
the “best simulation”.

2.6.2 Objective function
The Kling-Gupta efficiency (KGE) (Gupta et al. 2009) objective 
function was used to calibrate the SWAT model. The KGE is 
based on the decomposition of the NS and the mean square 
error (MSE) into three components: correlation, variability 
error, and bias error. A three-dimensional criteria space is 
created, where the KGE values are calculated in terms of the 
Euclidian distance from the ideal point and the pareto three- 
dimensional surface: 

KGE ¼ 1 � ED (2) 

with 

ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r � 1ð Þ
2
þ β � 1ð Þ

2
þ α � 1ð Þ

2
q

(3) 

α ¼ μs
�
μo

(4) 

β ¼ σs=σo (5) 

where r is the linear correlation coefficient; α is the ratio 
between the mean simulated (μs) and mean observed flow 
(μ0), and represents the bias; β is a measure of relative varia
bility and is the ratio between simulated (σs) and observed (σ0) 
standard deviation. KGE values range from – ∞ to 1, where 1 
represents the ideal value. An interesting feature of the KGE is 
that it reflects the lower limit of its three components, i.e., the 
worst value between r, β and α is higher than or equal to the 
KGE value (Piniewski et al. 2017).

In case of multiple variables, the objective function is 
defined as 

KGE0 ¼
X

j
wjKGEj (6) 

where wj is the weight of the jth variable. In this study, no 
distinction was made between the outlet and tributaries 
streamflow stations, therefore, the same weight was assigned 
to all 23 streamflow stations. Evapotranspiration calibration 
was carried out using sub-basin monthly evapotranspiration. 
As in the multi-site calibration, the objective function was 
calculated by attributing equal weights to the objective func
tion computed for each sub-basin.

Streamflow is more sensitive than evapotranspiration to the 
parameters selected for calibration. For this reason, calibration 
iterations did not consider both variables at the same time to 
calculate the objective function value. Section 2.6.4 (“Calibration 
strategies”) indicates the scheme adopted in the multi-variable 
calibration approach.

Since KGE is not a widely used indicator for assessing 
streamflow simulation performance, Nash-Sutcliffe (NS) effi
ciency coefficient and percent bias (PBIAS) are also reported. 
According to Moriasi et al. (2007), NS values above 0.50 are 
satisfactory for monthly flow, values from 0.65 to 0.75 are 
classified as “good” and values above 0.75 are “very good”. 
Similarly, PBIAS ≤ ±25% are classified as acceptable, and 
PBIAS ≤ ±10% are “very good”. These ratings, however, are 
not strict and the objective of the study and site conditions, as 
well as the modeling size area, must be taken into account 
when model performance is evaluated. For the KGE function, 
the value of 0.50, similar to the NS value suggested by Moriasi 
et al. (2007), was defined as acceptable and therefore simula
tions exhibiting KGE ≥ 0.50 were classified as behavioral. This 
was a simplified decision and we highlight that NS and KGE 
values are not directly comparable (Knoben et al. 2019). For 
example, the KGE mean flow benchmark (KGE = – 0.41) 
differs from the NS benchmark (NS = 0) (Knoben et al. 2019).

2.6.3 Uncertainty analysis
Uncertainty in SUFI-2 is expressed by the 95% probability 
distribution calculated from the 2.5% and 97.5% percentiles 
of the accumulated probability distribution of the output vari
able of interest. This result is presented as the 95% Probability 
Uncertainty (95PPU) “envelope” of solutions generated by the 
parameters value ranges. The p factor and r factor are statistical 
indicators used to quantify the output variable uncertainty and 
the agreement between the envelope of solutions and the 
measured data. The percentage of measured data bracket by 
the 95PPU envelope is quantified by the p factor. Uncertainty 
width is quantified by the r factor, which represents the thick
ness of the 95PPU envelope. The r factor is calculated as the 
ratio of the average thickness of the 95PPU band by the 
standard deviation of measured data (Abbaspour et al. 2004, , 
Abbaspour 2015). Abbaspour et al. (2015) recommended 
values of p factor ≥ 0.70 and r factor ≤ 1.50 for considering 
the calibration results as acceptable.

2.6.4 Calibration strategies
Three different calibration strategies were investigated (Fig. 3). 
In strategies E1 and E2, only streamflow data were used to 
calibrate the SWAT model. Strategy E3 included both 
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evapotranspiration and streamflow data. Strategy E1 considers 
only outlet streamflow in both iterations and is the benchmark 
for the other considered calibration approaches. In strategy E2, 
streamflow from all stations were used in both iterations, 
consisting of the multi-site calibration approach. Finally, strat
egy E3 was conducted using evapotranspiration in the first 
iteration and outlet streamflow in the second iteration, result
ing in a multi-variable calibration approach. As stated in sec
tion 2.6.1 (“SUFI-2 procedure”), all calibration strategies were 
conducted with 2 iterations, each iteration consisting of 500 
simulations. Therefore, in strategy E3 only one iteration is 
performed with each variable. This calibration strategy corre
sponds to two calibrations of one iteration each (each single- 
variable), with the exception that the initial parameter bounds 
changes from one calibration to the other. This was done to 
allow a fair comparison between all strategies. While the other 
two strategies have two iterations with the same variable, it 
would not be a fair comparison if we had used a higher number 
of total iterations in the third strategy. It would be desirable to 
get acceptable performance for evapotranspiration before 
switching the calibration to streamflow. However, we opted 
to perform only one iteration for each variable in order to keep 
this calibration strategy comparable with the other two (same 
total number of iterations). Since evapotranspiration was sen
sitive to fewer parameters, this variable was used in the first 
iteration, as an initial constraint of the parameter space, fol
lowed by calibration with outlet streamflow in the second 
iteration. Figure 3 indicates the calibration strategies according 
to the variable included in the objective function for each 
iteration.

3 Results

Model temporal and spatial validation were carried out with all 
the 23 streamflow gauges. Due to the high number of gauges, 
only the average value of all (including the outlet) and six 
different locations are presented hereafter (indicated in Fig. 2):

● Porto Capanema (code: 65,987,000), at the basin outlet 
(drainage area: 63 884 km2);

● União da Vitória (code: 65,310,000), in the middle of the 
basin, which drains 38% of the total area (drainage area: 
24 209 km2);

● São Bento (code: 65,155,000), which constitutes 
a representative behavior of the headwater sub-basins, 
and exhibits the worst performance of all locations (drai
nage area: 2006 km2);

● Jangada (code: 65,370,000), a small sub-basin with aver
age acceptable performance (drainage area: 1014 km2);

● Salto Caxias (code: 65,975,000), for daily validation only, 
streamflow gauge at the reservoir of the Salto Caxias 
hydropower plant where naturalized daily streamflow is 
available (drainage area: 57 060 km2);

Figure 3. Scheme indicating the applied calibration strategies according to the variable included in the objective function of each iteration.

Figure 4. Goodness-of-fit statistics for the simulation leading to the best average 
KGE value, at monthly time-step, for calibration (2006–2009) and validation 
(2002–2005) periods.
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● Porto Santo Antônio (code: 65,970,000), for daily valida
tion only, because it is a sub-basin exhibiting a distinct 
streamflow behaviour (drainage area: 1084 km2).

3.1 Model performance at monthly time step

Figure 4 presents the goodness-of-fit statistics for the monthly 
flow simulations, calibrated using all strategies. Figure 5 indi
cates the “best simulation” results, which is the parameter set 
that resulted in the highest average KGE value of all locations. 
The average and main outlet KGE values are all above 0.73, 
reflecting a good overall simulation performance for all cali
bration strategies. At the main outlet, KGE values ranged from 
0.73 to 0.86 among all strategies for both periods (2006–2009 
and 2002–2005). Considering the average value of all gauging 
locations, KGE ranged from 0.73 to 0.80. According to the 
classification of Moriasi et al. (2007), NS values for the main 
outlet are “good” (0.65–0.75) for all three strategies on the 
calibration period (2006–2009). For the validation period (
2002–2005), the main outlet NS is acceptable (>0.50) only for 
the multi-site (E2) strategy. The main outlet PBIAS values are 
very good (≤±10%) for both calibration and validation periods. 
Considering the average value of all locations, NS values are 
“good” or “very good”, ranging from 0.68 to 0.77.

The results suggest that conventional calibration (E1) can 
produce satisfactory performance for the inner sub-basins for 
monthly simulation (Fig. 5). The multi-site (E2) and multi- 
variable (E3) calibrations did not improve significantly the 
inner sub-basins simulation performance (Figs. 4 and 5). The 
average performance of the multi-variable calibration strategy 
(E3) was higher than the average performance of conventional 
calibration, but the main outlet performance was slightly 
depreciated. Considering the calibration period, the conven
tional strategy (E1) resulted in the highest values for NS and 
KGE at the main outlet. This result was expected since in 
strategy E1 both calibration iterations were performed using 
the main outlet data only. However, for the validation period, 

the best outlet performance was achieved by the multi-site 
strategy (E2), which also presents the best average perfor
mance within the three strategies.

Graphical analysis of the hydrograph (see the 
Supplementary Material, Fig. S1) and flow duration curves 
(FDC) (Fig. S2) reveals an overestimation of low flows for all 
strategies and locations, except for the outlet in E2. The KGE is 
influenced by the PBIAS, which are an average result of over 
and under prediction of flows from different magnitudes, and 
low absolute PBIAS can result from large compensations of 
under and overpredictions. The FDC, on the other hand, 
illustrates the over and underpredictions that occur at all 
flow magnitudes.

Monthly flow simulation for the year 2006, an exceptionally 
dry year in Iguaçu river basin, was satisfactory at the four 
locations and using all strategies, as it can be assessed by visual 
inspection of the hydrographs (Supplementary Material, Fig. 
S1). Satisfactory simulation for this extremely dry climate 
scenario suggests that the calibration method could be ade
quate for hydrological extreme climate scenarios.

3.2 Parameter temporal scale transferability: daily flow 
simulation performance

The goodness-of-fit statistics for the best simulation, at the 
daily time step, are presented in Fig. 6. A large dam is located at 
the Salto Caxias streamflow gauge where daily streamflow is 
controlled by the reservoir operation. The main outlet, Porto 
Capanema, is located 80 km downstream from Salto Caxias. As 
reservoir operations were not included in the simulation, daily 
streamflow simulated values at the main outlet are not 
expected to agree well with the available measurements, result
ing in poor NS and KGE values. Therefore, the naturalized 
daily streamflow provided by the ONS for the Salto Caxias 
streamflow gauge was used to calculate the daily performance 
statistics. For the daily simulation analysis, the Salto Caxias 
location is indicated instead of the main outlet. Despite that, 

Figure 5. Best simulation performance for the monthly simulation of 2006–2009.

Figure 6. Goodness-of-fit statistics for the best simulation, at the daily time-step, 
for calibration (2006–2009) and validation (2002–2005) periods.
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the main outlet was included on the daily average performance 
statistics to allow comparison with the monthly values.

According to the objective function (KGE), daily simulation 
performance is reasonably good for the average, Salto Caxias, 
União da Vitória and Jangada locations (Fig. 6). São Bento 
daily simulation performance, however, is poor. Only Salto 
Caxias and Jangada locations achieved acceptable NS values 
(≥ 0.50) for all strategies in the validation period. Daily KGE 

(NS) at the Salto Caxias location ranged from 0.65 to 0.73 (0.63 
to 0.68) for the calibration period and from 0.77 to 0.85 (0.59 
to 0.73) for the validation period. The average KGE values are 
higher for the validation period than for the calibration period, 
indicating that there was no depreciation from the calibration 
to the validation period. Measured and simulated daily hydro
graphs for the period January 2005 to December 2006 are 
presented in the Supplementary material (Fig. S3).

Similar to the results obtained for monthly simulation, NS 
values are significantly smaller than KGE values, indicating 
that the flow peaks were poorly simulated despite the good 
average flow simulation performance. Is important to note that 
KGE was used as objective function to determine the “best 
simulation” for each location, having impacted NS values pre
sented here. Better NS values could be obtained if this metric 
was chosen as the objective function.

All strategies and locations presented negative PBIAS values 
for the best simulation. Negative PBIAS values indicate 
streamflow overestimation, which occurs for low flows, as it 
can be visualized in the FDC (see the Supplementary Material, 
Fig. S4). The Salto Caxias daily FDCs indicate good agreement 
between the observed and simulated flows for all strategies. 
The negative PBIAS values for all strategies may suggest sys
tematic modeling errors. One possible cause may be water 
withdrawal for agriculture or urban supply not accounted for 
in the present study.

The results for the best simulation at daily time step for the 
validation period are shown in Fig. 7. The overall good daily 
performance suggests that parameter scale transferability may Figure 7. Best simulation performance for the daily simulation of 2002–2005.

Figure 8. Comparison of p factor and r factor of all streamflow gauge locations by strategy and period.
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be acceptable. Still, the poor performance for headwater sub- 
basins points out to the need of further studies. These head
water sub-basins are located upstream from União da Vitória, 
deteriorating its performance as well.

3.3 Predictive uncertainty

The quality of the predictive uncertainty was assessed by 
using two indicators: the p factor, which measures the 
percentage of observations bracket by the 95PPU envelope; 
and the r factor, which represents the thickness of the 
95PPU envelope. Comparison between p and r factors of 
all 23 locations, for each strategy and time step, can be 
visualized in Fig. 8. A balance between p and r must be 
pursued, in order to capture most of the measured data 
within the 95PPU band with the smallest uncertainty 
possible.

The multi-site (E2) strategy resulted in the highest p factors, 
for both monthly and daily simulations. This result indicates 
that, while the multi-site calibration did not improve signifi
cantly the inner sub-basins simulation performance in terms of 
“best simulation” (as presented in Section 3.1), it provided 
a more reliable uncertainty.

The multi-variable calibration strategy (E3) reduced the 
uncertainty width when compared to the conventional calibra
tion strategy (E1), for both monthly and daily time steps, 
which is indicated by the smaller r factors. However, this 
reduction in the uncertainty width was also followed by 
a reduction of p factor values. The reduced uncertainty for 
E3, compared to E1 and E2, is significant for monthly simula
tion, while still bracketing most of the observed data for, at 
least, half of the gauges.

3.4 Best solution set results

As indicated before, the objective of the SUFI-2 algorithm is not 
to define only one parameter set, but a “best range” for each 
calibrated parameter. Therefore, all parameter combinations 
inside the final ranges were assessed in terms of goodness-of-fit 
performance (KGE, NS and PBIAS) in order to assess the quality 
of the simulation for all possible calibrated parameter sets.

3.4.1 Kling-Gupta efficiency (KGE)
The range of KGE values obtained with the 500 simulations 
of the last iteration for each strategy is presented in Fig. 9. 
The high amplitude of KGE values reflects the large 

Figure 9. KGE values for the best solution set for daily and monthly simulations of calibration (2006–2009) and validation (2002–2005) periods.
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uncertainty for the “best solution set” (Fig. 9). Monthly 
simulation shows positive KGE values for all strategies for 
all locations except for São Bento. São Bento has higher 
amplitude of KGE values and a few negative values. Gauges 
located on the headwater sub-basins, like São Bento, exhibit 
poor performance for daily simulation. The results shown 
in Fig. 9 suggest that daily simulation can be reasonably 
acceptable for the outlet and the average of all stations, but 
headwater sub-basins need further calibration to reach 
acceptable performance. Some of the calibrated parameters 
are related to the channel routing phase, which can be 
significantly different for the headwater sub-basins.

Simulations were considered as behavioral when KGE 
was equal to or greater than 0.50, for monthly and daily 
streamflow. Strategy E3 exhibits the highest number of 
behavioral simulations for the monthly simulation and 
for the daily simulation in the calibration period. For 
the daily simulation in the 2002–2005 period, the highest 
number of behavioral simulations is found for the con
ventional calibration (E1). The number of behavioral 
simulations for the average of all 23 stations is higher 
for monthly simulation than for the daily simulation. 
This result is expected, since the model was only cali
brated at the monthly time step.

3.4.2 Nash-Sutcliffe efficiency (NS)
Monthly simulation in the calibration period shows good 
NS values for all stations, with a majority of positive and 
above 0.50 values, except for São Bento (Supplementary 
Material, Fig. S5). The NS values are significantly lower 
for the daily simulation, despite the acceptable NS values 

presented for the best simulation. This reveals insufficient 
performance of the monthly calibrated model to 
simulate daily flow peaks, especially for the headwater 
sub-basins.

4 Discussion

4.1 How well do multi-site and multi-variable calibration 
perform compared to single-site and single-variable 
calibration?

Single-site, single-variable calibration exhibited similar perfor
mance results than multi-site and multi-variable calibrations 
when only the performance of the “best simulation” is taken 
into account. However, the quality of the predictive uncertainty 
was higher in multi-site and multi-variable calibrations. Multi- 
site calibration provided a more reliable uncertainty for all 23 
sub-basins than the single-site calibration. Multi-variable cali
bration resulted in a reduced uncertainty compared to single- 
site and multi-site calibrations, although also followed by reduc
tion in the number of observations captured by the uncertainty 
bounds. Moreover, both multi-site and multi-variable calibra
tions resulted in a higher number of behavioral simulations 
from the best solution set (last 500 simulations).

The multi-site and multi-variable calibration strategies were 
especially useful for parameter transferability in time (i.e., daily 
time step simulation from monthly calibrated parameters). 
This approach can be used to work around the lack of data 
with the desirable time resolution when calibrating and vali
dating hydrological models.

The performance and uncertainty results for the headwater 
sub-basins, which exhibited poorer performance and higher 

Figure 10. Flow duration curve for the Porto Santo Antônio daily flow.
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uncertainty, is positively affected by the multi-site calibration 
strategy. This result reinforces that calibration and validation 
performance using the conventional single-site calibration 
approach can be strongly affected by basin characteristics.

4.2 Can we use a model calibrated at monthly time step 
to obtain simulations at daily time step?

Transferring parameters from monthly to daily time step 
resulted in streamflow simulation with satisfactory p and 
r factor values and acceptable performance regarding the 
objective function (KGE). However, daily simulation per
formances are inferior to the correspondent monthly simu
lation, especially for the headwater sub-basins. The reduced 
performance for the daily time step simulation may indi
cate that it can be related to the simulation of the peak 
flows. Daily simulation may be affected by the fact that 
peaks are more intimately related to hydraulic parameters 
that govern the routing phase, which were monthly cali
brated and may not be adequate for daily simulation. This 
may also point out to the need for caution when evaluating 
results in different time steps, since the coarser time step 
(monthly) provided rather good results for the objective 
function despite the bad peak simulation performance in 
the headwater sub-basins.

4.3 On the use of KGE for model calibration

Porto Santo Antônio exhibits very good NS values, despite the 
substantial flow overestimation revealed by the PBIAS values 
and daily FDC (Fig. 10). The results for this location illustrate 
that a good NS value can be achieved while having significant 
overestimation of flows, which is reflected on high PBIAS 
values. This is explained by the fact that KGE tends to search 
for an overall performance, preserving the distribution of 
flows, and therefore, providing better agreement between mea
sured and simulated FDC. Therefore, KGE value is negatively 
impacted by flow over or underestimations. On the other 
hand, NS criteria can lead to model simulations with large 
volume balance errors and underestimate flow variability 
(Gupta et al. 2009, Kling et al. 2012).

5 Conclusions

This study investigated the impact of multi-site and multi- 
variable SWAT model calibration on streamflow prediction 
and uncertainty for the Iguaçu River Basin and its inner sub- 
basins. Multi-variable calibration was carried out with remote 
sensed derived actual evapotranspiration and streamflow data. 
The results from multi-site and multi-variable calibration were 
compared with the conventional calibration, which uses only 
main outlet streamflow measurements. The impact of transfer
ring parameters from monthly to daily simulation was also 
investigated.

The conventional calibration provided good streamflow 
performance for the main outlet and for the inner sub- 
basins. The multi-site and multi-variable calibrations did not 
improve significantly the performance for inner sub-basins. 
However, multi-site calibration provided a more reliable 

uncertainty for all 23 sub-basins than the single-site calibration 
and multi-variable calibration resulted in a reduced uncer
tainty compared to single-site and multi-site calibrations.

Transferring parameters from monthly to daily time step 
resulted in streamflow simulation with satisfactory p and 
r factor values and acceptable performance regarding the objec
tive function (KGE). These results point out to the possibility of 
transferring parameters calibrated on a coarser time step to 
a finer time step. However, daily peak flow simulation (mea
sured by the NS) was unsatisfactory, notably for the headwater 
sub-basins. These sub-basins exhibited poor performance and 
high uncertainty, even when a multi-site strategy was used. 
Calibration with daily streamflow measurements may help 
improve our understanding of the parameter transferability 
efficiency by comparing the results with those presented herein.

The results presented in this paper indicate that the incor
poration of additional information in model calibration may 
be useful to improve the uncertainty estimate in streamflow 
simulation. This is true even with high uncertainties of the 
streamflow and evapotranspiration data.

The poor performance for some locations may be due to the 
presence of many hydropower plants reservoirs in the Iguaçu 
River Basin. Due to these reservoirs, some streamflow gauges 
data reflect the dam operation instead of the natural river 
behavior. We recommend further studies to implement these 
reservoirs operations in hydrological modeling of this basin.

We believe that the implementation of the multi-variable 
calibration strategy using all calibration variables simulta
neously with different objective function weights could lead 
to new results, enriching the discussion about the use of multi
ple variables for model calibration. The proper selection of 
weights could be done by evaluating the use of different com
binations of weights for the different variables and its impacts 
on model performance (e.g., Rientjes et al. 2013). Weights 
could also be assigned based on the sensitivity of the calibrated 
variables. Recommendations for future studies also include 
calibration with evapotranspiration data only and analysis of 
different model output variables, other than streamflow. The 
use of soil moisture remote-sensed estimations in multi- 
variable calibration are also encouraged for future studies.
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